Immunostimulation associated with environmental enteric dysfunction in children from a dual burden environment

Kelly M. Houck¹, Amanda L. Thompson¹ ², Margaret E. Bentley²

¹Department of Anthropology, University for North Carolina, Chapel Hill
²Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
Faculty Disclosure

No conflicts to disclose.
Immunostimulation Associated with Environmental Enteric Dysfunction

Exposures:
- Pathogens
- Diet
- Genetics
- Stress
- Toxins/Drugs

Balanced Gut Microbiota

Gut Dysbiosis
- Chronic intestinal inflammation
- Poor intestinal barrier function (leaky gut)

Endotoxemia
- Lipopolysaccharides (LPS) or endotoxins initiate inflammation & humoral immune responses.
- Microbial translocation of gram-negative bacteria

Immune Measures:
- Inflammation: C-reactive Protein (CRP)
- Endotoxemia: Endotoxin Core IgG Antibodies (EndoCAb)
 - *E. coli*, *P. aeruginosa*, *K. aerogenes*, *S. typhimurium*
Immunostimulation in Galápagos & Comparisons

- Galápagos setting - Dual Burden Environment
- Are both pathogenic and dietary factors increasing immunostimulation?

Data sources:
Sample and Key Measures

- **164 children 2-10 years old**
- **Mother’s interviews:** Household information, children’s relevant birth and health information, hygiene practices, illness histories and diets, anthropometric assessments were conducted.
- **Diet:** Food frequency questionnaires were taken to determine very high, high, moderate, rare consumption patterns of local food items.
- **Fecal pathogen exposure:** A household water sample was collected and quantified for *E. coli* levels using Colilert\(^1\) reagents.
- **Inflammation:** Two dried blood spots were collected approximately 10 days apart and analyzed for high sensitivity C-reactive protein (CRP) using Quantikine ELISA kits\(^2\).
- **Endotoxemia:** One dried blood spot analyzed for Endotoxin Core IgG antibodies (EndoCAb IgG) using Hycult Biotech ELISA kits\(^3\).

\(^1\) IDEXX Laboratories, Inc. Westbrook, MA.
\(^2\) R&D Systems, Inc. Minneapolis, MN.
\(^3\) Hycult Biotech, Inc. Plymouth Meeting, PA.
Single Pathogen Exposures

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Percent of Sample</th>
<th>CRP Models</th>
<th>EndoCAb Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal contaminated household water</td>
<td>High E. coli levels (>100 bacteria per 100mL) 12%</td>
<td>Low E. coli levels (<100 bacteria per 100mL) 88%</td>
<td></td>
</tr>
<tr>
<td>Brushed teeth with tap water</td>
<td>Yes 87%</td>
<td>No 13%</td>
<td></td>
</tr>
<tr>
<td>Hand washing frequency</td>
<td>Sometimes-Rare 37%</td>
<td>Always 64%</td>
<td></td>
</tr>
<tr>
<td>Location of bath</td>
<td>Outside 15%</td>
<td>Inside 85%</td>
<td>+</td>
</tr>
<tr>
<td>Presence of pets or animals</td>
<td>Yes 55%</td>
<td>No 45%</td>
<td>+</td>
</tr>
<tr>
<td>Attended school</td>
<td>Yes 78%</td>
<td>No 22%</td>
<td>+</td>
</tr>
<tr>
<td>Swam in ocean</td>
<td>Yes 38%</td>
<td>No 62%</td>
<td>+</td>
</tr>
</tbody>
</table>

p<.05 in all reported relationships. Adjusted for field season, sex, and age for all models, and obesity and infectious symptoms for the CRP only.
Single Dietary Consumption Factors

<table>
<thead>
<tr>
<th>Group</th>
<th>Percent in Sample</th>
<th>CRP Models</th>
<th>EndoCAb Models</th>
<th>Group</th>
<th>Percent in Sample</th>
<th>CRP Models</th>
<th>EndoCAb Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk</td>
<td></td>
<td>Very High</td>
<td>High</td>
<td>Milk</td>
<td></td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>Fried Meats</td>
<td></td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>Cheese</td>
<td></td>
<td>High</td>
<td>Moderate</td>
<td>Cheese</td>
<td></td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Empanadas</td>
<td></td>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Vegetables</td>
<td></td>
<td>Moderate</td>
<td>Very High</td>
<td>Vegetables</td>
<td></td>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ice Cream</td>
<td></td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Beans</td>
<td></td>
<td>High</td>
<td>Moderate</td>
<td>Beans</td>
<td></td>
<td>Moderate</td>
<td></td>
</tr>
</tbody>
</table>

Pie Chart Legend:
- **Very High:** Every Meal
- **High:** Daily
- **Moderate:** Weekly
- **Low:** Monthly/Rare

p<.05 in all reported relationship from adjusted models, low consumption is the referent.
Predicted Mean Inflammation Levels from Aggregate Model

Mixed-effects model of log-transformed CRP with random effects on intra-individual CRP variability; adjusted for field season, sex, age, obesity, infectious symptoms and clustering at the household level.
Predicted Mean Endotoxemia Levels from Aggregate Model

OLS model of log-transformed EndoCAb; adjusted for field season, sex, age and clustering at the household level.

** p<.05
* p<.1

OLS model of log-transformed EndoCAb; adjusted for field season, sex, age and clustering at the household level.
Discussion

- Pathogenic and dietary factors can simultaneously impact immunostimulation associated with environmental enteric dysfunction in a dual burden environment.
- Some pathogenic factors increase immune activation: school attendance, swimming in contaminated oceans.
- Habitual exposure to fecal contaminated water not causing infection may help to prime humoral immunity & regulate anti-inflammatory networks - hygiene hypothesis.
- Dietary endotoxemia and inflammation in populations with overnutrition:
 - Fried foods & sweets ↑, vegetables and beans ↓ immunostimulation.
 - Elevated milk consumption is associated with both inflammation & endotoxemia.
Inflammation & Endotoxemia in Dual Burden Environment

- No structural diagnostic measures of environmental enteric dysfunction

Data sources:
Conclusion

- Dual Burden of the Intestinal Microbiome

Immunostimulation Associated with Environmental Enteric Dysfunction

- Exposures:
 - Pathogene
 - Diet
 - Genetics
 - Stress
 - Toxins/Drugs

- Gut Dysbiosis
 - Chronic intestinal inflammation
 - Poor intestinal barrier function (leaky gut)

- Balanced Gut Microbiota
 - Microbial translocation of gram-negative bacteria

- Immune Measures:
 - Inflammation
 - C-reactive Protein
 - Endotoxemia
 - Endotoxin Core IgG Antibodies
 - (E. coli, P. aeruginosa, K. aerogenes, S. typhimurium)

Future research: mediating factors of gut microbiome

Infographic source: http://www.who.int/nutrition/double-burden-malnutrition doubleburdenmalnutrition_infographic.png
Acknowledgments

Funding Support:
• NSF Doctoral Dissertation Research Improvement Grant
• Wenner-Gren Dissertation Fellowship
• Triangle Center for Evolutionary Medicine, Duke University
• UNC Institute for Global Health and Infectious Disease
• UNC Graduate School
• UNC Carolina Population Center
• Population Research Training Grant (5 T32 HD007168) from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)

• I thank Gyssell Zapata, the Galápagos Science Center, the Human Biology Lab at UNC, Universidad San Francisco de Quito, and the participants and residents of San Cristóbal, Ecuador.